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Density functions such as the density of radioactivity in vivo and those arising in 
spectral theory, potential theory and other branches of physics, are related to their 
measured spectra by Fredhohn equations of the first kind. The problem of solving a 
Fredholm equation of the first kind is known to be mathematically “ill-posed.” The 
experimental and statistical errors in a measurement may often be such that the corre 
spending solution for the density function is physically meaningless in the absence of 
additional constraints. 

This paper is devoted to the solution of two-dimensional Fredholm equations of the 
first kind where the physical kernel of the equation can be approximated by a separable 
kernel. It introduces a smoothness constraint on the solution, which results essentially 
in smoothness by convolution. Two numerical experiments are given. 

I. INTRODUCTION 

In recent years it became increasingly evident that reliable methods of solving 
Fredholm integral equations of the first kind [5,8] 

s 
K(x, x’) f(x’) dx’ = g(x), XES, (1) 

D 

would have many useful applications in spectroscopy, potential theory, optimal 
programming, and other significant problems [2,3,5,7]. During the past two years, 
jointly with others [l, 41, we have examined the various available numerical 
methods for solving the one dimensional form of Eq. (1) with the kernel K(x, x’) 
fairly accurately known and the spectra g(x) experimentally measured with modest 
accuracy. Equation (1) can be regarded as a linear operator, operating on a density 
functionf(x) in the domain D to produce a spectrum g(x) in the range W. It is well 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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known [8] that this operator does not have a bounded inverse (we assume here that 
the kernel is nonsingular and that the operator has an inverse): an injinitesimal 
change in g may cause a finite change in f. Thus, the problem is mathematically 
“ill-posed.” 

We have found [l, 41 that for the one-dimensional model, the smoothing techni- 
que,l initiated by D. L. Phillips [8] in 1962, for solving Eq. (l), is very suitable for 
determining the unknown concentration of radioactivity per unit length of a linear 
source. This method is based on the physically meaningful assumption that 
(except possibly at a few irregular points) the magnitude of the density function 
(concentration of radioactivity, for example) cannot change abruptly between one 
point and adjacent points. Thus, the method is to seek that solution of Eq. (1) 
which satisfies appropriate smoothness requirements [l, 4,5,8]. 

Our initial investigations encourage us to generalize the smoothing techniques 
to solve two-dimensional Fredholm equations of the first kind. It is evident that a 
two- or three-dimensional description of the concentration of small amounts of 
radioactivity in vivo would have many applications, ranging from localization of 
internal or external contamination in research and industrial personnel, to the 
distribution of radioactivated natural element contents (24Na, 49Ca, etc.) in men 
occupationally exposed to tolerable doses of neutrons. 

The Fredholm equation under consideration here, takes the form 

I s bdx’ ’ 4’ K(x, x’, Y, Y’> f(x’, Y’) = dx, Y) + 4~ Y>. (2) a G 
The function f (x’, y’) is the unknown density of radioactivity, g(x, y) is the measured 
spectrum subject to both statistical and experimental error, and E(X, y) is the error. 
The measurement g is relatively insensitive to fictitious (positive-negative) density 
functions f’ which satisfy the inequality 

I J‘ ’ dx’ 
d 

du’ Hx, x’, Y, Y’) f ‘(x’s Y’) < E’(x, Y), 
a c 

where E’ is a distribution whose amplitude is of the order of the statistical error in 
the measurement of g(x, y). In other words, small errors in g(x, y) may be amplified 
to such an extent that the exact solution of the Fredholm equation (2) [deleting the 
unknown error term E(X, y)] is physically meaningless. In addition, the effect of an 
error in g on a calculated value offdepends on the smoothness of the kernel. Thus, 

1 We have previously [l, 4,6] referred to this technique as “regularization unfolding technique,” 
especially when smoothing is combined with an iterative technique (see Also Ref. 7). The term 
“unfolding” denotes the inverse problem of finding a density function from its measured spectrum. 
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the success of solving Eq. (2) approximately by any method depends to a large 
extent on the accuracy of g and the shape of the kernel K. 

In practice, if the range of g(x, v) happens to be larger than the domain off&‘, y’) 
(for example, when measuring radioactivity in the human body, it is advantageous 
to take counts over a range including the body and extending beyong it, thus 
increasing the information content), then the domain is extended to coincide with 
the range, with the added restriction that the density functionf(x’. JJ’) should vanish 
beyond the original region. 

II. METHOD OF SOLUTION 

A straightforward extension of the smoothing technique to two (or more) 
dimensions can be achieved with the aid of tensor product analysis [2]. However, 
in arriving at the modified smoothing method presented here, we were seeking 
both a simplified form and a reduction of the time required for computations. 
We achieve this by the use of a separable kernel and by the adoption of smoothness 
criteria which result essentially in smoothness by convolution. 

The first approximation we make is that the kernel K(x, x’, y, y’) is separable, i.e., 

K(x, x’, y, y’) = K’l’(x, x’) K’Q( y’, y). (3) 

We expect kernels for physical problems to depend upon the distance between the 
point at which a measurement is made and the point measured as follows: 

Kk x’, y, y’) = K([x - x’12 + 1 y - ~‘1”). (4) 

For the one-dimensional distribution of radioactivity in vivo, which we have 
reported elsewhere [I, 41, our experimental results indicate that the kernel can 
often be approximated by a Gaussian distribution. For two dimensions, such a 
kernel typically takes the form 

K(x, x’, Y, y’) = A exp{-[(x - x’j2 + ( y - Y’)~]/~u~}, (5) 

and is indeed separable as in Eq. (3). 
For the separable Kernel Eq. (3), the Fredholm equation (2) can be approximated 

by a matrix equation. We assume that the domain off(x’, v’) (the region [a, b] x 
[c, d]) and the range of g(x, JJ) coincide and thus use (x’, y’) and (x, y) 
interchangeably (see last paragraph of the introduction). The interval [a, b] is 
subdivided into M parts a = x1 < x2 < ..* < x, = b and we associate with these 
divisions appropriate quadrature weights v1 , v2 ,..., vM . Similarly, the interval 



222 ABU-SHUMAYS AND MARINELLI 

[c, dj is subdivided into N parts c = y, < yz < *a* < y, = d, and we associate 
with these divisions appropriate quadrature weights u1 , u2 ,..., u, . Using Eq. (3), 
Eq. (2) can now be approximated as follows: 

g(xk, yc) + ~(xk , yc) = 1” dx’ K’Yxk , x’> /,“f(d Y’) Kf2)(y’v YC) 4 
0 

s b 

CT! dx’ K’l’(xk , x’) 5 f(x’, yi’) ujKt2)( yi’, yc> 
a i=l 

-g ( 
K(l) xk , xi’) Zi$f(&‘, yj’) UjKf2’( yj’, y{), 

(k = 1, 2 ,..., M), (/ = 1, 2 ,..., N). (6) 

Using the abbreviated notation gkd for &I, , yd), etc., we replace the approximate 
W (f-9 by 

MN 

(7) 

If the quadrature formula is sufficiently accurate, we expect the discrete solution 
& of Eq. (7) to approximate the solutionf(x,‘, yi’) of the original Eq. (2). Assuming 
that ckd is negligible compared to gke and introducing the matrix notation G = ( gkG), 
F = (f&, A = (K,$vJ and B = (qK$)), Eq. (7) becomes formally 

G = AFB. (8) 

Equation (8) as such incorporates the statistical and experimental errors in evalu- 
ating the elements of G and the quadrature error in the integrations leading to the 
new kernels A and B. Thus, from the considerations given above we expect in 
general that the exact solution F = A-lGB-l of Eq. (8) will be meaningless, and 
hence we need additional constraints in order to get a physically meaningful 
solution. We propose smoothness constraints on the solution Fas is indicated below. 
We also assume that the expected errors in G for a given problem are known 
and thus we require an acceptable solution F to be such that the corresponding 
spectrum G computed on the basis of Eq. (8) deviates from the original measured 
spectrum by an order of magnitude comparable with the statistical and experimental 
errors (see the discussion of Eqs. (10) and (14) and the examples below). 

The smoothing technique is based on the physically meaningful assumption that 
(except possibly at a few irregular locations) the magnitude of the density function 
f(x’, y’) cannot change abruptly: (a) between one point and its immediate neighbors 
on the grid i = l,..., M; j = l,..., N, and (b) between adjacent grids; in other 
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words, we require the surfacef(x’, JJ’) of the distribution to be sufficiently smooth. 
Here we seek a solution of Eqs. (6), (7) and (8) which is piecewise smooth and 
such that the results of its integration over x alone and over y alone as in Eq. (6) 
are also piecewise smooth. For example, typical smoothness constraints on the 
result of integrating over x alone, 

h(x, y) = j-” P’(x, x’) f(x’, y) dx’, 
a 

are to minimize the sum of the squares of second differences, i.e., to require each 
three adjacent points (say, &-I , hii , /z,,~+~) to be on or very close to a straight line. 
For convenience in deriving Eq. (12) below, we shall assume that the rectangular 
grid {xi , ui} is uniform. The second difference of h(x, v) for fixed x then becomes 
(I?~,~-~ - 2hij + hi,j+,)/(dy)2 as is implicit in Eqs. (9) and (13). Equation (12) holds 
for a nonuniform grid provided that the smoothing matrices S, and S2 given below 
are modified to properly account for the second difference, etc. 

A suitable formulation of the problem is then to find the solutions f& which 
minimize the function 

+ 7572 c vk-Ld-I - 2fk-l.d + fk-l.d+l - 2fk,& + 4fkd - 2fk,d+l 
k.8 

+ fi+l,t-1 - 2fk+,J + fk+l,d+112 + Boundary Terrm (9) 

The first term on the rightside of Eq. (9) is a measure of the error in solving 
Eq. (8). This term in detail [using Eq. (7)] is 

where Pkd = p,& are appropriate weight factors. These weight factors need not be 
displayed if the matrix notation given above is modSed so that G = (Pk{gk&, 
A = (&&$‘a~) and B = (r.@$q{). If there is no apriori evidence that some of the 
gk;s are more accurate than others, then one may set P,, = 1, pk = 1, qk = 1 

581/7/2-3 



224 AIKJ-SHUMAYS AND MAlUNELLI 

for all k,&‘. Minimizing this measure of the error e2, yields the least square solution2 

F = [ATA]-’ A=GB=[BB=]-I. (11) 

This solution is equivalent to the exact solution of Eq. (8), and is likewise expected 
to be meaningless whenever G has appreciable (statistical or experimental) error. 
Moreover,3 these solutions are inappropriate if A and/or B is “ill conditioned” 
(nearly singular) and a better way to minimize Eq. (10) would be to apply House- 
holder’s transformations as indicated in Ref. [IO]. 

The coefficients y1 and y2 of the smoothing terms in Eq. (9) denote optional 
weights that control the degree of smoothing along the x and y directions, respec- 
tively. The second and third terms on the rightside of Eq. (9) have the effect of 
bringing the elements of each row or column close to the elements of the two 
neighboring rows or columns. The fourth term corrects for expected random 
fluctuations at each point of the solution of the density function by weighting each 
net of nine neighboring points as indicated in Fig. 1. 

FIG. 1. A net of nine points and their corresponding weights. These weights appearing in the 
fourth term on the right side of Eq. (9) have the effect of minimizing the derivative a4flaxz aye 
and reducing unnecessary fluctuations. 

Finally, the last terms in Eq. (9) control the value of the density functions at the 
boundaries, as will be indicated below in connection with the smoothing matrices. 

The algebra of minimizing H of (9) while holding y1 and yz constant leads to 
the result 

[A=A + ylS,=Sl] F[BB= + y&S,=] = ATGBT. 

Hence, the desired solution for the density functionf(x, y) is 

F = [ATA + ylSITSl]-’ A=GB=[BB= + y2S2S2=]-l, (12) 

2 The superscript T denotes transpose. 
a The authors are obliged to the referee for pointing this out and recomending Householder’s 

transformations. 
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where S, and S, are the following square matrices: 

s, = 

s, = 

s:1 $2 
1 -2 1 

1 -2 

0 

Sfl 1 
S& -2 1 

1 -2 

0 

1 
. 1 

. . 
1 

0 

S 

0 

-2 1 
1 
M&f-l 34, 

(1W) 

The matrices S, and S, are defined as the smoothing matrices for the x-variables 
and the y-variables respectively. The matrices A and/or B corresponding to a 
physical problem can be “ill-conditioned” (nearly singular) and thus in the absence 
of smoothing (rr = yZ = 0) or for very weak smoothing (n and/or yZ very small) 
one expects the numerical results based on Eq. (12) to be rather sensitive to the 
choice of the matrix inversion method (see footnote 3). However, one advantage 
of smoothing is that in general the matrices [ATA + ~JITSI] and [BBT + y2S,S,T] 
are not ill-conditioned and furthermore are real, symmetric and positive definite. 
This enables us to utilize the well-developed and relatively fast matrix inversion 
subroutines based on Gaussian elimination technique, especially designed for such 
matrices [9]. However, if ill-conditioning is a problem, Eq. (9) can be rewritten in 
a form in which the minimum is obtainable by Householder transformations, as 
was mentioned for Eq. (IO), above. 

The unspecified terms in the matrices S, and S, of Eq. (13) control the conditions 
of the first and last rows and the tist and last columns of the solution matrix F. 
For example, if the first row of F is known to be zero (if the distributionf(x, y) is 
known to be zero at the edge x = a), one writes S& = 0 and Sh = 1, or better, 
St1 = large number (the dominant term forf(x, y) in this case can be shown to be 
f(a, y) = const/&); if the first row is known to be almost the same as the second 
row (if for y fixed f(x, y) is known to approach a constant as x approaches the 
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edge x = a) one puts Sir = -S& = 1, and if no condition is to be given at the 
first row (at the end point x = a) one sets S1 r1 = P - r2 - 0. The equivalent conditions 
hold for the last row and the first and last columns of F. 

We have so far specified only one option of smoothing by the matrices given in 
Eq. (13). One may choose to smooth by minimizing the sum of the squares of the 
first or fourth differences or any suitable combination thereof, rather than the 
second [5]. In fact, the choice of smoothing matrices S, and S, is optional and may 
depend on the problem considered and the amount of initial information available. If 
a given row (column) of F, say the k-th row (column) is known to vanish [for 
example, when the range of g(x, y) exceeds the actual domain off(x, y)] then, as 
in the treatment of boundary terms above, the element Sik(SiL) of the matrix 
S,(S,) is set equal to a large number, while the rest of the elements in the row and 
column of &(S,) containing the element Sj$(S&) are set equal to zero. 

As mentioned above, y1 and yZ are weights that control the degree of smoothness 
of the solution Eq. (12). Usually it suffices to compute the rightside of Eq. (12) for 
a few values of yr and yZ in order to estimate the values of these weights yr and yZ 
which would lead to an acceptable solution F. The acceptable values of y1 and yZ 
are those which would lead to a new spectrum G’ [computed from the solution F 
by Eq. (8)] which deviates from G by an amount comparable to the (given) expected 
statistical and experimental error in the measured spectrum g(x, y). We have 
already specified one measure of the error, e2 given by Eq. (10); another useful 
measure of the error is 

(14) 

where ] Ek{ 1 is the absolute value of the difference between the spectrum gkd at 
(xL , yd) and its value computed on the basis of the solution Eq. (12); more precisely 

(15) 

The factors pkJ are appropriate weights which again may be set equal to one if 
there is no apriori evidence that some of the g,(‘s are more accurate than others. 

If necessary, the physical constraint that the density function F should be non- 
negative can be imposed by an addition of a one-step iteration to the solution Eq. 
(12). The details are similar to what we have reported in Ref. [4] for one dimension 
and will be omitted here. However, from our experience in one dimension, we have 
reason to believe that the correct choice of y1 and yZ will invariably lead to an 
essentially nonnegative solution (i.e., f 3 -E, E -+ 0) whenever such a solution is 
required by the physics of the problem. 
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III. PRELIMINARY APPLICATIONS 

A computer program for the IBM 360 has been written by A. Meyer to solve 
Eqs. (9) and (12). The program has a large number of options and for details we 
refer to the write-up Ref. [6]. Among the options are various ways to specify the 
kernel, the smoothing matrices and the weights for quadrature and for different 
regions of the measured spectrum g(x, y). The program allows numerical and 
graphical print-outs. 

In order to investigate the applicability of the method described above, we have 
selected to treat the two mathematical models presented below. We also selected 
uniform mesh spacing and Simpson’s rule quadrature weights for simplicity. 

EXAMPLE 1. Single Peak Distribution 

In this and in the following example, simple surface distributions and separable 
Kernels [as in Eq. (3)] are chosen. Here we select the elliptic paraboloid density 
function 

(16) 

This surface is symmetric with respect to the planes x = x,, and y = yO. It is 
concave downwards and limited to the region z < 21x. Each plane z = const 
(z < 201) perpendicular to the z-axis cuts the surface in an ellipse and each plane 
x = const or y = const cuts the surface in a parabola. We confine our attention 
to the region above the xy-plane with a base restricted to the interval XE[O, 2x,], 
Y40, hll. 

The kernel is selected to be the Gaussian 

K(x, x’, y, y’) = a2 exp[-((x - x’)~ + (y - y’)2}/4a2]. (17) 

The spectrum g(x, u) is then given by 

g(x, y) = (” dx’ ,f”” dy’ a2 exp[-{(x - x’)~ + (JJ - y’)2}/4a2] 
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Carrying out the integration, we get 

AND MARINELLI 

where Q(t) is the error function 

Q(t) = erf(t) = 2 j” 
dn 0 e-t2 d*. 

For the purpose of numerical computations we select 01 = 1, a = 10, x0 = 5 
and y0 = 10. We also select three values of u, u = 0.5, 1 and 2, and the mesh size 
M x iv= 11 x 21.4 

The process of solving a Fredholm equation of the first kind [Eq. (2)] by appro- 
ximating it with a matrix equation [Eq. (8)] involves quadrature error which 
depends on the following variables: the kernel shape and size, the order of the 
matrices (the grid density or mesh size, A4 x N) and the particular density function 
studied. For the present problem, we have computed the matrix G in two ways, 
(i) from Eq. (19) for the analytical representation of the spectra, and (ii) directly 
from the matrix Eq. (8) with the matrix Ffor the density function, and the response 
matrices A and B computed from the basis of Eqs. (16) and (17), respectively. The 
numerical results are not published, but indicate, as we would expect, that the 
response kernel is better represented, and hence the quadrature error becomes 
smaller, as the kernel becomes wider and/or grid lines become denser (i.e., as the 
order of the matrices F, G, and hence the order of A and B increases). 

In the present example, we will eliminate the quadrature error by starting with 
the spectra G computed on the basis of the matrix Eq. (8) rather than the integral 
(Fredholm) Eq. (2). Depending on the shape of the response kernel K, the matrices 

4 Results of additional computations will be presented in an Argonne National Laboratory 
Report. 
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ATA and BBT may have an eigenvalue very close to zero and hence may be almost 
singular (or singular due to machine limits on the accuracy of matrix computations). 

We have applied the method described above to the spectra G of size M x N = 
11 x 21. Table I summarizes the main results when G = MB is used and also 
when an error is introduced in G by reducing its elements to 4 S.F. (significant 
figures), 3 S.F., and 2 SF. The results for y1 and yZ = 0 represent the usual 
(unsmoothed) solutions; other values of y1 and yz represent different degrees of 

TABLE I 

Evaluation of the Computed Density Matrix F for the Single Peak Distribution relative 
to its Exact Value; Summary of Numerical Results for M x N = 11 x 21 

Narrow Kernel 
0 = 0.5 

G = xx. - XXX.~ 
_____-. 

Yl Corn 
= YI 8 puted Fc 

G = AFB 0.0 Af 
lo+ 1.3 x lO-5 A+ 
lo-? 1.3 x lop3 A 

Comments Problem correctly posed 

Medium Kernel 
0 = 1.0 

G = xxx. - xxxx.” 

Wide Kernel 
0 = 2.0 

G = XXXX.~ 

Yl Com- 
Ye 6 puted F 

0.0 D 
lo-* 5.5 x 1O-4 A 
10-Z 1.5 x 10-Z B 

A, B ill conditioned 

Yl Com- 
=y2 < puted F 

0.0 No Solution 
IO-” 5.6 x lo-$ A 
lO-3 8.9 x lo+’ B 
lO-2 2.4 x lO-2 B 

ATA and BBT singular 

keduced lO-4 0.0 1.3 x lO-5 A A 0.0 0.01 No 2.4 x 1O-2 E B 0.0 0.1 0.20 Solution C 
to 4 SF. lo-* 1.3 x 1O-3 B 0.1 7.3 x 1O-p A 0.3 0.41 B 

0.5 0.23 B 0.5 0.51 c 

G 0.0 
(Reduced 0.1 1.2 x 10-Z 
to 3 S.F.) 0.5 4.0 x 10-Z 

1.0 6.2 x lO-2 

G 0.0 
(Reduced 0.5 8.9 x lo-* 
to 2 S.F.) 1.0 0.13 

5.0 0.28 

B 0.0 
B 0.1 0.21 
A 0.5 0.29 
B 1.0 0.35 

C 0.0 
c 5.0 2.1 
B 10.0 2.3 
C 20.0 2.5 

E 
C 
B 
C 

E 
C 
B 
C 

0.0 No solution 
0.1 0.27 C 
0.5 0.54 B 
0.7 0.60 C 

0.0 No solution 
1.0 2.6 C 
5.0 2.6 B 

10.0 2.6 C 

a Each x stands for a digit between 0 and 9 in the position it occupies relative to the decimal 
point indicated-xx., xxx., give the order of magnitude of the value under consideration. 

b E‘ stands for the average error in G corresponding to the computed F. 
c The ratings indicate that the agreement of the computed F with its known value over most of 

the domain [a, b] x [c, d] is accurate at least to within = A = 0.01 %, B = 0.1 %, C = 1 %, 
D = 20 % and E indicates no agreement (see Figs. 2-4). 
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smoothing. A sample of the graphical results is given in Figs. 2-4. These figures 
show contours for the spectrum G and the corresponding exact density matrix 
and/or solution matrix F. 

We observe that for the narrow response kernel (u = 0.5) the matrices ATA and 
BBT are positive definite and well-conditioned (possess well-defined inverses). 
As the response kernel becomes wider, these matrices become more and more 
ill-conditioned (their smallest eigenvalues become closer and closer to zero). 
In fact, for u = 2.0 and M x N = 11 x 21, the computer program indicated 
that these matrices are singular to within double precision (16 digit) accuracy. We 
were able to satisfy our curiosity, however, and get inverses for ATA and BBT by 
resealing these matrices. The details will be omitted, but the corresponding solutions 
of the matrix equation G = AFB were highly oscillatory and physically meaningless. 

The above justifies the results given in Table I and shown in Figs. 2-4. For 
u = 0.5, M x N = I1 x 21, although the shape of the spectrum is distorted due 
to quadrature error in evaluating G by Al;(exact)B [Eq. (8) instead of Eq. (19)]; 
the solution given by Eq. (11) is stable as shown in Fig. 2. In this case smoothing 
becomes necessary only if very large errors are introduced in the spectra. Smoothing 

3) Spectrum G b) EXXX Density F c) F for ‘i 1 y1 = y2 = 0 
(No Smwtlliilg) 

FIG. 2. Narrow Kernel: Q = 0.5, M x N = 11 x 21. 

3) SpecrrLm G b) F for ? = 0 c) I: for Y = .OOOl 

FIG. 3. Average Kernel: D = 1.0, M x N = 11 x 21. 
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c) F ioi y = 0 

d) Ffory =O.l 
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FIG. 4. Effect of errors introduced in the spectrum G of Fig. 3a. 

is necessary for o = 1.0 and CT = 2.0. We note that the values of y1 = yz (for 
an explanation of how to choose y1 and yz , see the main text above and Example 2 
below) and hence the degree of smoothness needed to yield an optimum solution 
for the density matrix F increases as the error in G increases and, in general, as the 
response matrices become more and more ill-conditioned. 

Figures 3-4 illustrate the situation for u = 1.0. Figure 3 shows that the 
unsmoothed solution (rI = yz = 0) is only slightly distorted and the distortion 
is removed by smoothing with y1 = yz = 0.0001. Figure 4a shows that an error of 
less than .l % introduced by reducing G to 4 S.F. (retaining only the largest 4 S.F. 
for each value of G) leads to an unacceptable solution. The desirable solution of 
Fig. 4b is achieved by smoothing with y1 = yz = 0.1. The rest of Fig. 4 illustrates 
the results when G is reduced to 3 S.F. and to 2 S.F. 

EXAMPLE 2. Double Peak Distribution. 

We consider here the following analogue of Example 1 of Phillips, Ref. [8, p. 871 
given in Fig. 5: 

m u) = fi(4 fi( VI, CM 
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a) Actual Shape b) Contours for M x N = 13 x 13 c) Contotirs for h4 x N = 25 x 25 

FIG. 5. Exact density function. 

where 

fi(x) = (1 - cos F) for x E [-6,0] 

=A l-cos?) ( for x E [0, 61, @lb) 

and 

.&z(y) = B (1 + cos F) for y E [-3,3] 

= 0 for / y 1 > 3. cw 

Note that the parameter B controls the height of the peaks shown in Fig. 5a while 
the parameter A allows the right hand peak (x 3 0) to be equal to, smaller than 
or larger than the left hand (x < 0) peak. In addition, note that the region con- 
sidered is x4-6,6], JJE[-6,6] while the positive part of the density of interest is 
restricted to only half of this region. The density function vanishes for y 3 3. 

The kernel for this problem has the same shape as one of the peaks in Fig. 5a. 
It is given by 

K(x, x’, Y, Y’) = J4 x - x’ I) RI Y - 1” I), (224 

where 

K(t) = 1 + cos y for / t I < 3 

= 0 for j t I > 3. 

The spectrum g(x, y), 

Ax, v) = 11, dx’ f, W K(I x - x’ I) q y - Y’ I)fW, v’) 

Wb) 

is then given by 

dx, u) = Bgdx) gz(y), (23) 



UNFOLDING IN TWO DIMENSIONS 233 

where as in Ref. [S] (omitting algebraic details), 

gs(y) = (6 - I Y I) (1 + ; cos Jfd$-) + -$ sin v, YE [---6961 
(24) 

and g,(x) is given in terms of g, as 

L?l = &a + 3)Y for x E [-6, -31 

= g2(x + 3) + Ag,(x - 3), for x E [-3,3] (25) 

= A& - 3), for x E [3,6]. 

For numerical computation we select A = B = 1 (the two peaks are of the same 
height for the results reported here). Furthermore, we compute the elements 
Gij = g(x, , yj) from the analytic expressions of Eqs. (23)-(25) and thus, contrary 
to what was done in Example 1, we do not eliminate the quadrature error here. 
Table II summarizes the computational and graphical results corresponding to the 
grid density M x N = 13 x 13. For this case, the quadrature error is bounded by 
0.4, and seems to dominate the errors artificially introduced by reducing g to 4 S.F., 
3 S.F., and 2 SF. We observe from Table II5 that, throughout the computations, 
the optimum results for the density matrix F were those for which the average error 
Z is in the expected range Z = 0.2-0.4. Table III summarizes the computational and 
graphical results which correspond to the grid density M x N = 25 x 25. Here, 
the quadrature error is bounded by (0.0x) and the average quadrature error is 
0.008 & 0.001. We observe from Table III that the best choices of y corresponding 
to G = AFB and G = AFB reduced to 4 SF., are those for which Z is in the 
range 0.008 f 0.001 of the average quadrature error. For G = (AFB reduced 
to 3 S.F.) and (AFB reduced to 2 S.F.), Table III indicates that the best choices of 
y1 = yZ are those which lead to z in the range of the error introduced in G. 

The symbols SMI to SM5 in Tables II and III correspond to smoothing with 
the following types of boundary conditions (see Fig. 5 for the exact density 
matrix F): 

SMl. No boundary conditions imposed on the solution matrix F. 
SM2. The tirst and last columns and rows of F are required to be relatively small. 
SM3. The first and last columns and rows of F are required to vanish. This restriction 

corresponds to the fact that the actual distribution (See Fig. 5) vanishes at the 
extreme boundaries. 

SM4. The solution is required to vanish outside the actual nonnegative part of the 
distribution (outside the range of the two peaks, see Fig. 5). 

SMS. The same conditions as for SM4 plus the requirement that values of the solution 
corresponding to the dividing line between the two peaks (see Fig. 5) should 
vanish. 

6 A slight difference in the optimum choice of y often still leads to reasonably accurate solutions. 
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TABLE II” 

Evaluation of the Computed Density Matrix F for the Double Peak Distribution relative 
to its Exact Value; Summary of numerical Results for A4 x N = 13 x 13 

G : Gij Q xx.) 

E<j sg .x G (reduced to 4 SF.) G (reduced to 3 SF.) G (reduced to 2 S.F.) 

Computed Computed Computed Computed 
Yl = Yz c F Yl = Yz E F Yl = Yz c F Yl = Yz c F 

0.0 D 0.0 D 0.0 E 0.0 E 

SMl .02 .19 c .02 .19 c .02 .19 c .02 .24 D 
.03 .21 B .03 .21 B .03 .22 B .04 .28 C 
.04 .24 C .04 .24 C .04 .24 C .06 .32 D 

SM2 .02 .19 C .02 .I9 c .02 .19 c .02 .24 D 
.03 .21 B .03 .21 B .03 .22 c .04 .29 C 
.04 .24 C .04 .24 C .04 .24 B .06 .32 D 

Slightly better than SMl 

SM3 .03 .21 B .03 .21 B .04 .24 B .04 .30 c 
.04 .24 A .04 .24 A .06 .28 A .06 .33 C 
.05 .26 B .05 .26 B .08 .31 B .08 .36 B 

Noticeably better than SM2 

SM4 .04 .21 A .04 .21 A .04 .28 A .06 .36 C 
.05 .29 A .05 .29 A .06 .31 B .08 .39 B 
.06 .31 B .06 $31 B .08 .35 B .lO .42 C 

Slightly better than SM3 

SM5 .04 .27 B .04 .27 A .04 .28 A .06 .36 C 
.05 .29 A .05 .29 A .06 .32 B .08 .40 B 
.06 .31 B .06 .31 B .08 .35 B .lO .43 c 

Hardly better than SM4 

a See footnotes to Table I. 
* The magnitude of each element of G is (G)i3 < 81; l ii stands for the quadrature error. 

A sample of the results summarized in Tables II and III are presented in Figs. 
6-8. Figs. 6a, b show the solution, Eq. (12) for M x N = 13 x 13, in the absence 
of smoothing. These figures complement each other in the sense that while Fig. 6a 
shows the contours corresponding to the solution, Fig. 6b (which shows the cross- 
sections of the solution corresponding to one of the two peaks of the density 
function) indicates the relative magnitudes of the solution and the known exact 
value of the density function. In particular, Fig. 6b indicates that the third and 
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b) Actual Cross -sections 

A-----x n 
c) y = 0.004,SMl d) y = 0.04, SM3 

FIG. 6. Solution Fcorresponding to G computed from Eqs. (23)-(25) for M x N = 13 x 13. 

,A---- \ 

3) ‘” = 0 b) -j = ii.l-4, Shll 

FIG. 7. Solution Fwrresponding to G reduced to 4 SF., M x N = 13 x 13. 
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a)r=O b) y = 0.004, SMI c) y = 0.001, SM3 

Frc. 8. Solution Fcorresponding to G computed from Eqs. (23)-(25), for M x N = 25 x 25. 

fourth contours circumscribing each part of Fig. 6a, correspond to values of density 
higher than both the innermost and outermost contours. While the solution given 
in Fig. 6a is unacceptable, the smoothed solutions given in Figs. 6b, c, d are very 
close to the exact density function. Figure 6c corresponds to SMl and shows that a 
slight error is introduced when the boundary conditions are not known. Fig. 6d 
corresponds to SM3 with known boundary conditions (see above). Thus, as we 
would expect, the computational and graphical results show clearly that advance 
knowledge of useful information about a distribution may be utilized to improve 
the solution. 

Fig. 7a, b, c corresponds respectively to Fig. 6a, c, d when G is reduced to 4 S.F. 
Fig. 7a indicates the wide error introduced in the unsmoothed solution when an 
error of less than 0.1 ‘A is introduced in the spectrum. Finally, Fig. 8a, b, c corre- 
sponds to Fig. 6a, c, d when the mesh size is 25 x 25 instead of 13 x 13. Here 
again the unsmooth solution, though its contours are very appealing to the eye, 
is an unacceptable representation of the actual density; the smoothed solutions 
Fig. 8b, c demonstrate the effectiveness of the method given above for calculating 
a density function from its measured spectra. 
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